Científicos de la UGR diseñan un 'cerebelo artificial' capaz de controlar un robot de manera predictiva

Aseguran que la idea de este trabajo surge de tomar la biología como fuente de inspiración para resolver problemas tecnológicos

Representación gráfica del campo de la neurorobótica. La biología, por medio de estudios neurocientíficos, sirve de inspiración para afrontar desafíos tecnológicos de la robótica.
Representación gráfica del campo de la neurorobótica | Foto: Gabinete
Miguel López Rivera
0

Un equipo de científicos de la Universidad de Granada (UGR) ha diseñado un 'cerebelo artificial' para control predictivo de un robot, inspirándose así en el comportamiento humano para dar respuesta a desafíos tecnológicos de la robótica, en tanto que es capaz de aprender a realizar una tarea motora bajo distintas circunstancias, prediciendo qué acciones son necesarias para conseguirlo.

Este trabajo ha aplicado por primera vez el comportamiento predictivo del cerebelo humano para proporcionar robustez ante retardos temporales variables que afectan a la transmisión de señales de percepción-acción de un ciclo de control robótico. El autor principal, Ignacio Abadía Tercedor, del Departamento de Arquitectura y Tecnología de Computadores de la UGR, explica que la idea de este trabajo surge de tomar la biología como fuente de inspiración para resolver problemas tecnológicos.

"En concreto, aprovechamos características propias del cerebelo y las aplicamos a desafíos actuales de la robótica. Así, hemos desarrollado un modelo simulado de cerebelo que permite controlar el movimiento de un brazo robótico, aprendiendo desde cero cómo realizar una tarea motora determinada. Las principales características del cerebelo que replica nuestro modelo simulado son: aprendizaje y control motor adaptativo y robustez ante los retardos temporales que afectan a la transmisión de señales de percepción-acción".

Esto permite realizar control remoto de robots, incluso a distancias de cientos de kilómetros, y también controlar robots colaborativos bioinspirados, los cuales están dotados de componentes elásticos y flexibles que replican los músculos y tendones del cuerpo humano y dificultan el uso de técnicas de control clásico.

El grupo de investigación 'Applied Computational Neuroscience' (Neurociencia Computacional Aplicada), liderado por el catedrático de la UGR Eduardo Ros, tiene una trayectoria de más de 25 años dedicados al estudio de distintos centros nerviosos (cerebelo, oliva inferior, ganglios basales, sistema visual, hipocampo) y su posterior simulación computacional.

La investigación del grupo ha estado centrada principalmente en el cerebelo, centro nervioso que integra vías motoras y sensitivas, gracias a una serie de características que lo hacen único. En contraste con otros centros nerviosos cuya estructura neuronal es más "caótica", el cerebelo tiene una estructura regular y bien definida, y juega un papel claro y reconocido en el control motor: ejecución de movimientos precisos, coordinación, equilibrio y aprendizaje motor.

Estas características convierten al cerebelo en un perfecto candidato para desarrollar modelos simulados computacionalmente y aplicarlos al control robótico. En un trabajo anterior, los científicos de la UGR ya presentaron la aplicación de un modelo de cerebelo como controlador de los movimientos de un brazo robótico. Se trata de un modelo biológicamente plausible; esto es, la simulación respeta y replica propiedades biológicas previamente estudiadas por otros estudios neurocientíficos.